•   
  •   

US News Mars is humming. Scientists aren’t sure why.

12:45  27 february  2020
12:45  27 february  2020 Source:   nationalgeographic.com

Caroline Flack's ex-fiance breaks silence after her suicide

  Caroline Flack's ex-fiance breaks silence after her suicide Caroline Flack's ex-fiance has broken his silence following her death. The former Love Island presenter was found dead at her east London flat on Saturday.Andrew Brady has said prosecutors are not to blame after she was charged with assaulting her boyfriend Lewis Burton and instead has criticised the British media.The former Apprentice star blamed a "witch hunt" for her death during a lengthy statement on his Instagram. He wrote: "I would kindly ask you for her mum and her family's that you stop pointing the finger at the wrong people. "The prosecutors aren't to blame for Caroline's death.

Scientists aren ’ t sure why . NASA’s latest robotic geologist is starting to reveal the red planet’s pulse.Tuesday, 25 February 2020. Analysis suggests the Mars hum is unrelated to the planet’s roaring winds, and it seems to strengthen with the crack of a distant marsquake.

Scientists aren ’ t sure why . Under its frigid, dusty surface, Mars is humming . The first 10 months of data from NASA's Mars Insight mission reveal the Red Planet really does rumble, but there's a lot of things scientists are at a loss to

Under its frigid, dusty surface, Mars is humming. The quiet, constant drone periodically pulses with the beat of quakes rippling around the planet, but the source of this alien music remains unknown.

This Martian hum is just one in a slew of fresh mysteries and discoveries detected by NASA’s InSight lander. The work, described in a suite of five studies published today in Nature Geoscience and Nature Communications, provides a peek at the surprising activity above and below the red planet’s surface.

Ancient Humans in the Sahara Desert Were Feasting on Fish 10,000 Years Ago

  Ancient Humans in the Sahara Desert Were Feasting on Fish 10,000 Years Ago "The quantity of fish we have found and studied are unprecedented in the central Sahara," researcher Savino di Lernia told Newsweek.Researchers have found a vast number of animal remains—including those of fish—at a site in the Sahara Desert, casting new light on the ancient peoples who used to live there.

Scientists aren ’ t sure why . Under its frigid, dusty surface, Mars is humming . The quiet, constant drone periodically pulses with the beat of quakes SCIENTISTS think if there is life on Mars it's likely to be hidden in deep underground caves. This theory is supported by Nasa experts and the US space

Scientists aren ’ t sure why . Under its frigid, dusty surface, Mars is humming . Faint tremors on Mars are detected by scientists for the first time, according to new findings from NASA's InSight lander, which landed on the red planet almost 15

InSight touched down on Mars in November 2018, following a harrowing descent to a flat, featureless expanse near the planet's equator. Since then, the craft has been using an extremely sensitive seismometer and an array of additional instruments to take readings that are helping scientists untangle Mars’s geologic activity and internal structure.

InSight is designed to map out Mars's interior structures. Among the spacecraft's many instruments, InSight carries an extremely sensitive seismometer, shown in the center of this image, that's been monitoring the planet's every quiver. © Photograph by NASA/JPL-Caltech

InSight is designed to map out Mars's interior structures. Among the spacecraft's many instruments, InSight carries an extremely sensitive seismometer, shown in the center of this image, that's been monitoring the planet's every quiver.

“It’s just such a relief to finally be able to stand up and shout, look at all this great stuff we’re seeing,” says Bruce Banerdt, the principal investigator of the InSight mission.

Tiny Star Emits Unusually Powerful X-Ray Flare

  Tiny Star Emits Unusually Powerful X-Ray Flare Scientists previously thought stars like these were not capable of such high-energy eruptions. However, the unique super flare in question—recorded by the European Photon Imaging Camera (EPIC) onboard ESA's XMM-Newton X-ray observatory in 2008—is challenging our understanding of these events, according to a study published in the journal Astronomy & Astrophysics. Your browser does not support this video require(["binding"], function (binding) { binding("wcVideoPlayer", "#video_player_1fd5ec99-c076-441b-9b2c-82df23bd8287").

Scientists aren ’ t sure why . Under its frigid, dusty surface, Mars is humming . The quiet, constant drone periodically pulses with the beat of quakes rippling around Faint tremors on Mars are detected by scientists for the first time, according to new findings from NASA's InSight lander, which landed on

Scientists aren ’ t sure why . Under its frigid, dusty surface, Mars is humming . The quiet, constant drone periodically pulses with the beat of MODERATE seismic activity and ground vibrations have been detected on Mars , giving scientists hope that life could potentially be detected on the red planet.

In addition to the strange hum, the latest batch of data from InSight describes the first active fault zone discovered on Mars, patterns and pulses in the modern magnetic fields, and hints to the planet’s magnetic past. Taken together, the information gleaned from Mars is vital to figuring out how all rocky planets form and evolve over time.

“You can’t make a model just from Earth, you need more data points,” says Suzanne Smrekar, the deputy principal investigator of the InSight mission. “It’s just super exciting that we see some of these things, and that we are trying to understand Mars.”

Curious quake origins

One of InSight’s primary goals is to measure the seismic activity of Mars. The first few months of listening for temblors were worryingly quiet. But finally, on April 6, 2019, the first "marsquake" ever detected rumbled across the red planet, thrilling earthbound seismologists.

NASA’s InSight lander officially detects ‘marsquakes’ on Mars

  NASA’s InSight lander officially detects ‘marsquakes’ on Mars Long-term cooling is causing many of the quakes.The initial results of the mission were published on Monday in the journals Nature Geoscience and Nature Communications. The lander, which touched down on Mars via supersonic parachute in 2018, detected its first possible marsquake in April 2019.

It's OK, Mars . I also hum to myself when I think no one is listening. Writer @WeiPoints and editor @jaywbennett weave an amazing tale of all the mysteries NASA’s InSight lander has detected humming on Mars . Scientists aren ’ t sure why . Under its frigid, dusty surface, Mars is humming .

“Before our observations, scientists thought it was highly unlikely that we’d detect X-rays from Pluto, causing a strong debate as to whether Chandra should observe it at all,” study co-author Scott Wolk said in the release. “Prior to Pluto, the most distant solar system body with detected X-ray emission

Since that detection, the marsquakes have continued to roll in, with more than 450 recorded so far, Banerdt says. While the level of activity didn’t come as a surprise, small events seem to be happening more and more frequently. The uptick in small tremors could be a seasonal effect, but since we’ve only just started collecting records, that’s still one of the many mysteries the team is working to unravel.

The InSight lander sits on Mars's surface in an illustration, which shows both its seismometer and temperature-sensing probe dubbed the 'mole.' © Illustration by NASA/JPL-Caltech

The InSight lander sits on Mars's surface in an illustration, which shows both its seismometer and temperature-sensing probe dubbed the 'mole.'

Scientists are also unsure exactly where all these marsquakes come from. Here on Earth, the planet’s surface frequently quivers due to the slow march of tectonic plates. Stress builds up in the crust, and a sudden release generates a quake. But Mars doesn’t have global plate tectonics, so geologists are eyeing other possible triggers.

Two particular temblors InSight detected are helping scientists inch closer to answers. The pair rang loud and clear, clocking in between magnitude three and four, which allowed researchers to track them back to their area of origin—a series of deep slashes in the surface known as Cerberus Fossae, which formed 10 million years ago or less.

NASA’s InSight lander officially detects ‘marsquakes’ on Mars

  NASA’s InSight lander officially detects ‘marsquakes’ on Mars Long-term cooling is causing many of the quakes.The initial results of the mission were published on Monday in the journals Nature Geoscience and Nature Communications. The lander, which touched down on Mars via supersonic parachute in 2018, detected its first possible marsquake in April 2019.

Expansive lava flows and floods of water once burst from these fissures onto the surface, and some fluids might still linger deep underground. As such, pockets of magma cooling and contracting, or the movement of molten rock or even water through the subsurface, are possible sources for the pair of Martian rumbles, Smrekar says. (Learn more about the first active fault zone found on Mars.)

To pinpoint the cause of marsquakes, and to get a better picture of the subsurface, scientists will have to detect more tremors, maybe even a few whoppers.

  Mars is humming. Scientists aren’t sure why. © Getty

“We’d love to see a [magnitude] five,” Smrekar says. “And who knows? It’s a waiting game.”

The Martian song that never ends

InSight also detected a mysterious seismic signal that constantly hums in the background of the popping quakes.

Earth has many steady background hums, the most prevalent of which comes from the slosh of oceans and the crash of waves against the shore. But at 2.4 hertz, Mars’s drone is a higher pitch than most naturally occurring hums on Earth, which tend to fall below 1 hertz, says Stephen Hicks, an earthquake seismologist at Imperial College London who was not involved in the new studies.

Analysis suggests the Mars hum is unrelated to the planet’s roaring winds, and it seems to strengthen with the crack of a distant marsquake. The effect is a little like causing a bell to ring by yelling nearby, explains Joshua Carmichael, a quantitative geophysicist at Los Alamos National Laboratory who was not involved in the research. Your voice is a mix of frequencies, and if one matches the resonance of the bell, your shouts can set it ringing.

Earth’s new ‘mini-moon’ is leaving soon. But it’ll be back.

  Earth’s new ‘mini-moon’ is leaving soon. But it’ll be back. Astronomers expect mini-moon sightings to grow far more common as a new, giant telescope going up in Chile starts scanning the sky. It’s an exciting prospect for scientists interested in someday sending a spacecraft to study one of the rocks and maybe even bring it back to Earth. © K. Wierzchos/T. Pruyne/University of Arizona/Catalina Sky Survey/K. Wierzchos/T. Pruyne/University o... Astronomers believe they have spotted the second “mini-moon” ever recorded. “These asteroids are what built the planets,” Scott Sheppard, an astronomer at the Carnegie Institution for Science, told The Washington Post.

Perhaps the hum is related to the geology beneath InSight, which somehow amplifies that particular tone, Banerdt says. InSight sits in an ancient crater, since filled with dust and sand, which could ring by trapping waves from the quakes. However, the structure is not also excited by turbulent winds, and the basin seems a little small to generate this particular ring, Banerdt says.

Gallery: The most stunning space photos ever (Photos)

The hum and the quakes could possibly come from two separate sources, Hicks says. The InSight lander itself might even be causing the mysterious resonance, Banerdt adds.

“It’s extremely puzzling,” Banerdt says. “We have no consensus idea what this is.”

A sharpening magnetic picture

In addition to revealing oddities about Mars’s current seismic activity, the latest data from InSight have uncovered something unexpected about the planet’s magnetic field: The field surrounding the lander is 10 times stronger than that predicted by satellites.

On Earth, our magnetic field is driven by what’s known as a geodynamo, created as the molten iron core inside the rotating planet steadily churns some 1,800 miles beneath our feet. This churn generates a global magnetic field that surrounds the planet and shields it from solar radiation.

Mars also had a geodynamo once, but it ground to a halt billions of years ago, perhaps allowing solar blasts to strip away a once-thick atmosphere. Only wisps of Mars’s magnetism still linger today, in the form of magnetic minerals locked in the planet’s rocks. As such, the planet has a patchwork of magnetic fields of varying intensities draped across its surface.

Gallery: An exploration of the planets in our solar system (Photos)

Orbiters have provided a fuzzy picture of that patchwork field while soaring high above the ground. But now, InSight has provided the equivalent of a high-res image, and the magnetic field is much more intense than expected. While the lander’s measurement is just a single data point, the information could eventually help untangle the strength of Mars’s past geodynamo, which could in turn answer questions about when and why Mars transitioned from a warm, wet world to a cold, dry orb.

“This measurement was our first little tiny taste—one single point—of how much stronger the magnetization might be,” says Robert Lillis, a planetary space physicist at the University of California, Berkeley who was not part of the study team.

The new studies also provide a tantalizing clue to the geodynamo’s age. The researchers traced the signals to a rock unit miles underground that’s thought to be some 3.9 billion years old—about 200 million years younger than when Mars’s geodynamo is commonly thought to have switched off.

Did the geodynamo churn in Mars’s core for longer than previously believed? It’s tough to say for sure due to vast uncertainties in the age of the rock units, cautions Catherine Johnson, first author of the new study on Mars’s magnetic fields and a geophysicist with the University of British Columbia and the Planetary Science Institute. But perhaps future discoveries from InSight will offer more clues.

The mysterious pulse

InSight also detected some wobbling magnetism layered on top of Mars’s steady magnetic field—changes from day to night and signals that occasionally throb in a faint pulse.

Daily magnetic field variations are common on Earth. On the dayside of our planet, solar radiation beats down on the upper atmosphere, creating charged particles that interact with winds and Earth’s ropey magnetic field lines to generate electrical currents. As a result, the magnetic field on the dayside of our planet receives a little extra boost, while the nightside is slightly weaker. This diurnal pattern is also seen on Mars—something scientists weren’t expecting to detect from the surface.

The Martian magnetic field seems to have shorter periods of wobbling that take place right around midnight and sometimes during dawn or dusk. They don’t appear every day, with no apparent rhyme or reason behind the pattern, Johnson notes. The invisible conductor of this magnetic orchestra is likely high above the red planet’s surface. There, streams of charged particles from the sun flow around the planet, partially deflected by Mars’s weak atmosphere and patchy magnetic field.

Turbulence in these solar winds could generate waves in Mars's magnetic field, and this process or similar effects could be the source of the pulsations that InSight measures on the surface.

“We really don’t understand where these are coming from,” Johnson says. Paired analysis from InSight on the ground and an orbiter called MAVEN in the sky might help provide a break in the case.

Meanwhile, all of the InSight data from the new studies are now available to the public, with new batches publicly released every three months. Banerdt hopes that other scientists will join his team in their continued efforts to pore over the numbers.

“The more minds you have thinking about this stuff,” he says, “the more likely you are to come up with some good answers.”

What the papers say – March 6 .
The spread and impact of Covid-19 in the UK continues to dominate the nation’s papers on Friday.The Sun, Daily Express and Metro all say the patient who died is believed to be a 75-year-old British woman.

—   Share news in the SOC. Networks

Topical videos:

usr: 10
This is interesting!